If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=-11x+13
We move all terms to the left:
3x^2-(-11x+13)=0
We get rid of parentheses
3x^2+11x-13=0
a = 3; b = 11; c = -13;
Δ = b2-4ac
Δ = 112-4·3·(-13)
Δ = 277
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-\sqrt{277}}{2*3}=\frac{-11-\sqrt{277}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+\sqrt{277}}{2*3}=\frac{-11+\sqrt{277}}{6} $
| S(-19)=7-4n | | 8(x-5)=3x+27 | | 8+14x-14=106 | | -x-45x-5=271 | | X-15y=-122 | | -24x-16-1=103 | | -9x+20x+20=130 | | 8x+13-26=3 | | -7-14x+10x=37 | | -8-80x=552 | | 9x+9=4x+15 | | 11x+6=14x-18 | | 5+-3/2x=-5 | | 2(x-1)2x+(5x+2)=180 | | 73=5x+1+6x-5 | | -29=h-11 | | 18+x=-1 | | f(3)=(-8) | | 2(40-5m)=10+5(1-m) | | (6x+9)+(5x-16)=180 | | 3x^2-9x=9x^2-14x | | -8(8-m)-(8m+3)=-67 | | 35=-6s | | 4x-5=2x=4 | | 45+2k+2k=k | | 10x+28=53-x | | 8^(3x)=78 | | -2(u-9)=-9u+32 | | -2(I-9)=-9u+32 | | 2/3x+x=5/6 | | -2-3w=-23 | | 2/3x-2=1/6x+3 |